Processing OpenEHR files¶
Experimental
Please note: This page features experimental content, and we are not experts in openEHR. Proceed at your own risk.
openEHR is an open standard for electronic health records (EHRs), ensuring consistency and interoperability in medical data across healthcare systems. It uses a dual-level structure: a base model and customizable templates for various medical scenarios. When represented as JSON, openEHR data maintains its hierarchical form, using objects and key-value pairs to depict healthcare data and metadata, enabling compatibility across diverse healthcare applications.
Where does your openEHR JSON
data come from?
Finding JSON
examples can be challenging. For this demonstration, we'll use sample data from this helpful publication.
Citation:
Kohler S, Boscá D, Kärcher F, Haarbrandt B, Prinz M, Marschollek M, Eils R. Eos and OMOCL: Towards a seamless integration of openEHR records into the OMOP Common Data Model. J Biomed Inform. 2023 Aug;144:104437. doi: 10.1016/j.jbi.2023.104437. Epub 2023 Jul 12. PMID: 37442314.
This is how their data person_data_v0.json
(source) looks like:
JSON data
[
{
"id": "##ignore",
"person": "##ignore",
"visitConcept": {
"id": "##ignore",
"conceptName": "Inpatient Visit",
"domainId": "Visit",
"vocabularyId": "Visit",
"conceptClassId": "Visit",
"standardConcept": "S",
"conceptCode": "IP",
"validStartDate": "1969-12-31T23:00:00.000+00:00",
"validEndDate": "2099-12-30T23:00:00.000+00:00",
"invalidReason": null,
"idAsLong": "##ignore"
},
"visitStartDate": "2020-09-30T22:00:00.000+00:00",
"visitStartDateTime": "2020-09-30T22:00:00.000+00:00",
"visitEndDate": "2020-09-30T22:00:00.000+00:00",
"visitEndDateTime": "2020-09-30T22:00:00.000+00:00",
"visitTypeConcept": {
"id": "##ignore",
"conceptName": "EHR",
"domainId": "Type Concept",
"vocabularyId": "Type Concept",
"conceptClassId": "Type Concept",
"standardConcept": "S",
"conceptCode": "OMOP4976890",
"validStartDate": "2020-08-19T22:00:00.000+00:00",
"validEndDate": "2099-12-30T23:00:00.000+00:00",
"invalidReason": null,
"idAsLong": "##ignore"
},
"provider": null,
"careSite": null,
"visitSourceValue": null,
"visitSourceConcept": null,
"admittedFromConcept": {
"id": "##ignore",
"conceptName": "No matching concept",
"domainId": "Metadata",
"vocabularyId": "None",
"conceptClassId": "Undefined",
"standardConcept": null,
"conceptCode": "No matching concept",
"validStartDate": "1969-12-31T23:00:00.000+00:00",
"validEndDate": "2099-12-30T23:00:00.000+00:00",
"invalidReason": null,
"idAsLong": "##ignore"
},
"admittedFromSourceValue": null,
"dischargedToConcept": {
"id": "##ignore",
"conceptName": "No matching concept",
"domainId": "Metadata",
"vocabularyId": "None",
"conceptClassId": "Undefined",
"standardConcept": null,
"conceptCode": "No matching concept",
"validStartDate": "1969-12-31T23:00:00.000+00:00",
"validEndDate": "2099-12-30T23:00:00.000+00:00",
"invalidReason": null,
"idAsLong": "##ignore"
},
"dischargedToSourceValue": null,
"precedingVisitOccurrence": null,
"idAsLong": "##ignore"
}
]
For simplicity, we'll use the term id
in place of primary_key
, aligning with the default configuration.
Next, we'll replace it with an actual id
(Person_X
) and replicate the object five times to create an array with five individuals.
Running Pheno-Ranker
¶
Example 1: Using all terms¶
The result is a file named matrix.txt
. Find below the result of the clustering with R
.
You get the concept . Altering the values will consequently change the distances.
Example 2: Using a configuration file¶
Let's create a configuration file for this data:
---
format: openEHR
# Set the allowed terms / properties
allowed_terms: [admittedFromConcept,admittedFromSourceValue,careSite,dischargedToConcept,dischargedToSourceValue,id,idAsLong,person,precedingVisitOccurrence,provider,visitConcept,visitEndDate,visitEndDateTime,visitSourceConcept,visitSourceValue,visitStartDate,visitStartDateTime,visitTypeConcept]
Save the contents in a file named open_ehr_config.yaml
. Now you can exclude or include terms:
This will output the results to the console and additionally save them in a file titled rank.txt
.
RANK | REFERENCE(ID) | TARGET(ID) | FORMAT | LENGTH | WEIGHTED | HAMMING-DISTANCE | DISTANCE-Z-SCORE | DISTANCE-P-VALUE | DISTANCE-Z-SCORE(RAND) | JACCARD-INDEX | JACCARD-Z-SCORE | JACCARD-P-VALUE | REFERENCE-VARS | TARGET-VARS | INTERSECT | INTERSECT-RATE(%) | COMPLETENESS(%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Person_1 | Person_1 | openEHR | 45 | False | 0 | -1.789 | 0.0368191 | -6.7082 | 1.000 | 1.789 | 0.2150986 | 45 | 45 | 45 | 100.00 | 100.00 |
2 | Person_5 | Person_1 | openEHR | 46 | False | 2 | 0.447 | 0.6726396 | -6.1926 | 0.957 | -0.447 | 0.9260814 | 45 | 45 | 44 | 97.78 | 97.78 |
3 | Person_3 | Person_1 | openEHR | 46 | False | 2 | 0.447 | 0.6726396 | -6.1926 | 0.957 | -0.447 | 0.9260814 | 45 | 45 | 44 | 97.78 | 97.78 |
4 | Person_2 | Person_1 | openEHR | 46 | False | 2 | 0.447 | 0.6726396 | -6.1926 | 0.957 | -0.447 | 0.9260814 | 45 | 45 | 44 | 97.78 | 97.78 |
5 | Person_4 | Person_1 | openEHR | 46 | False | 2 | 0.447 | 0.6726396 | -6.1926 | 0.957 | -0.447 | 0.9260814 | 45 | 45 | 44 | 97.78 | 97.78 |