Cohort mode
Cohort mode performs a cross-comparison of all individuals in a cohort(s) using as a metric the Hamming distance or the Jaccard index. The resulting matrix can be further analyzed (e.g., with R
) using unsupervised learning techniques such as cluster characterization, dimensionality reduction, or graph-based analytics.
Generic JSON tutorial
We created a tutorial that deliberately uses generic JSON data (i.e., movies) to illustrate the capabilities of Pheno-Ranker
, as starting with familiar examples can help you better grasp its usage.
Once you are comfortable with the concepts using movie data, you will find it easier to apply Pheno-Ranker
to real GA4GH standards. For specific examples, please refer to the cohort and patient pages in this documentation.
Usage¶
When using the Pheno-ranker
command-line interface, simply ensure the correct syntax is provided.
For this example, we'll use individuals.json
, which contains a JSON
array of 36 patients. We will conduct a comprehensive cross-comparison among all individuals within this file.
First, we will download the file:
wget https://raw.githubusercontent.com/CNAG-Biomedical-Informatics/pheno-ranker/refs/heads/main/t/individuals.json
Pheno-Ranker
:
More input examples
You can find more input examples here.
This process generates a matrix.txt
file, containing the results of 36 x 36 pairwise comparisons, calculated using the Hamming distance metric.
See matrix.txt
107:week_0_arm_1 | 107:week_2_arm_1 | 107:week_14_arm_1 | 125:week_0_arm_1 | 125:week_2_arm_1 | 125:week_14_arm_1 | 125:week_26_arm_1 | 125:week_52_arm_1 | 125:week_78_arm_1 | 215:week_0_arm_1 | 215:week_2_arm_1 | 215:week_14_arm_1 | 215:week_26_arm_1 | 215:week_52_arm_1 | 215:week_78_arm_1 | 257:week_0_arm_1 | 257:week_2_arm_1 | 257:week_14_arm_1 | 257:week_26_arm_1 | 275:week_0_arm_1 | 275:week_2_arm_1 | 275:week_14_arm_1 | 275:week_52_arm_1 | 305:week_0_arm_1 | 305:week_26_arm_1 | 305:week_52_arm_1 | 365:week_0_arm_1 | 365:week_2_arm_1 | 365:week_14_arm_1 | 365:week_26_arm_1 | 365:week_52_arm_1 | 527:week_0_arm_1 | 527:week_2_arm_1 | 527:week_14_arm_1 | 527:week_26_arm_1 | 527:week_52_arm_1 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
107:week_0_arm_1 | 0 | 24 | 23 | 6 | 23 | 23 | 24 | 43 | 40 | 16 | 27 | 29 | 27 | 49 | 32 | 29 | 45 | 45 | 50 | 14 | 25 | 30 | 51 | 18 | 26 | 45 | 20 | 25 | 26 | 30 | 45 | 24 | 24 | 23 | 32 | 43 |
107:week_2_arm_1 | 24 | 0 | 3 | 22 | 3 | 3 | 2 | 23 | 18 | 30 | 7 | 9 | 7 | 29 | 10 | 47 | 25 | 25 | 28 | 30 | 5 | 10 | 31 | 32 | 4 | 25 | 34 | 5 | 6 | 8 | 25 | 42 | 2 | 3 | 10 | 23 |
107:week_14_arm_1 | 23 | 3 | 0 | 21 | 2 | 2 | 3 | 22 | 19 | 29 | 6 | 8 | 6 | 28 | 11 | 46 | 24 | 24 | 29 | 29 | 4 | 9 | 30 | 31 | 5 | 24 | 33 | 4 | 5 | 9 | 24 | 41 | 3 | 2 | 11 | 22 |
125:week_0_arm_1 | 6 | 22 | 21 | 0 | 21 | 21 | 22 | 41 | 38 | 14 | 25 | 27 | 25 | 47 | 30 | 29 | 43 | 43 | 48 | 12 | 23 | 28 | 49 | 16 | 24 | 43 | 18 | 23 | 24 | 28 | 43 | 24 | 22 | 21 | 30 | 41 |
125:week_2_arm_1 | 23 | 3 | 2 | 21 | 0 | 2 | 3 | 22 | 19 | 29 | 6 | 8 | 6 | 28 | 11 | 46 | 24 | 24 | 29 | 29 | 4 | 9 | 30 | 31 | 5 | 24 | 33 | 4 | 5 | 9 | 24 | 41 | 3 | 2 | 11 | 22 |
125:week_14_arm_1 | 23 | 3 | 2 | 21 | 2 | 0 | 3 | 22 | 19 | 29 | 6 | 8 | 6 | 28 | 11 | 46 | 24 | 24 | 29 | 29 | 4 | 9 | 30 | 31 | 5 | 24 | 33 | 4 | 5 | 9 | 24 | 41 | 3 | 2 | 11 | 22 |
125:week_26_arm_1 | 24 | 2 | 3 | 22 | 3 | 3 | 0 | 23 | 18 | 30 | 7 | 9 | 7 | 29 | 10 | 47 | 25 | 25 | 28 | 30 | 5 | 10 | 31 | 32 | 4 | 25 | 34 | 5 | 6 | 8 | 25 | 42 | 2 | 3 | 10 | 23 |
125:week_52_arm_1 | 43 | 23 | 22 | 41 | 22 | 22 | 23 | 0 | 7 | 49 | 26 | 28 | 26 | 8 | 15 | 26 | 4 | 4 | 9 | 49 | 24 | 29 | 10 | 51 | 25 | 4 | 53 | 24 | 25 | 29 | 4 | 21 | 23 | 22 | 15 | 2 |
125:week_78_arm_1 | 40 | 18 | 19 | 38 | 19 | 19 | 18 | 7 | 0 | 46 | 23 | 25 | 23 | 13 | 10 | 31 | 9 | 9 | 12 | 46 | 21 | 26 | 15 | 48 | 20 | 9 | 50 | 21 | 22 | 24 | 9 | 26 | 18 | 19 | 10 | 7 |
215:week_0_arm_1 | 16 | 30 | 29 | 14 | 29 | 29 | 30 | 49 | 46 | 0 | 33 | 27 | 33 | 43 | 38 | 37 | 51 | 51 | 56 | 12 | 31 | 34 | 45 | 22 | 32 | 51 | 18 | 31 | 30 | 36 | 51 | 34 | 30 | 29 | 38 | 49 |
215:week_2_arm_1 | 27 | 7 | 6 | 25 | 6 | 6 | 7 | 26 | 23 | 33 | 0 | 12 | 2 | 32 | 15 | 50 | 28 | 28 | 33 | 33 | 8 | 13 | 34 | 35 | 9 | 28 | 29 | 8 | 9 | 13 | 28 | 45 | 7 | 6 | 15 | 26 |
215:week_14_arm_1 | 29 | 9 | 8 | 27 | 8 | 8 | 9 | 28 | 25 | 27 | 12 | 0 | 12 | 26 | 17 | 50 | 30 | 30 | 35 | 23 | 10 | 13 | 28 | 37 | 11 | 30 | 31 | 10 | 9 | 15 | 30 | 47 | 9 | 8 | 17 | 28 |
215:week_26_arm_1 | 27 | 7 | 6 | 25 | 6 | 6 | 7 | 26 | 23 | 33 | 2 | 12 | 0 | 32 | 15 | 50 | 28 | 28 | 33 | 33 | 8 | 13 | 34 | 35 | 9 | 28 | 29 | 8 | 9 | 13 | 28 | 45 | 7 | 6 | 15 | 26 |
215:week_52_arm_1 | 49 | 29 | 28 | 47 | 28 | 28 | 29 | 8 | 13 | 43 | 32 | 26 | 32 | 0 | 21 | 30 | 10 | 10 | 15 | 47 | 30 | 33 | 4 | 57 | 31 | 10 | 55 | 30 | 29 | 35 | 10 | 27 | 29 | 28 | 21 | 8 |
215:week_78_arm_1 | 32 | 10 | 11 | 30 | 11 | 11 | 10 | 15 | 10 | 38 | 15 | 17 | 15 | 21 | 0 | 39 | 17 | 17 | 20 | 38 | 13 | 18 | 23 | 40 | 12 | 17 | 42 | 13 | 14 | 16 | 17 | 34 | 10 | 11 | 2 | 15 |
257:week_0_arm_1 | 29 | 47 | 46 | 29 | 46 | 46 | 47 | 26 | 31 | 37 | 50 | 50 | 50 | 30 | 39 | 0 | 24 | 24 | 29 | 31 | 44 | 47 | 28 | 37 | 45 | 24 | 37 | 44 | 43 | 49 | 24 | 7 | 47 | 46 | 39 | 26 |
257:week_2_arm_1 | 45 | 25 | 24 | 43 | 24 | 24 | 25 | 4 | 9 | 51 | 28 | 30 | 28 | 10 | 17 | 24 | 0 | 2 | 7 | 47 | 22 | 27 | 8 | 49 | 23 | 2 | 51 | 22 | 23 | 27 | 2 | 23 | 25 | 24 | 17 | 4 |
257:week_14_arm_1 | 45 | 25 | 24 | 43 | 24 | 24 | 25 | 4 | 9 | 51 | 28 | 30 | 28 | 10 | 17 | 24 | 2 | 0 | 7 | 47 | 22 | 27 | 8 | 49 | 23 | 2 | 51 | 22 | 23 | 27 | 2 | 23 | 25 | 24 | 17 | 4 |
257:week_26_arm_1 | 50 | 28 | 29 | 48 | 29 | 29 | 28 | 9 | 12 | 56 | 33 | 35 | 33 | 15 | 20 | 29 | 7 | 7 | 0 | 52 | 27 | 32 | 13 | 46 | 26 | 7 | 56 | 27 | 28 | 22 | 7 | 28 | 28 | 29 | 20 | 9 |
275:week_0_arm_1 | 14 | 30 | 29 | 12 | 29 | 29 | 30 | 49 | 46 | 12 | 33 | 23 | 33 | 47 | 38 | 31 | 47 | 47 | 52 | 0 | 27 | 30 | 45 | 18 | 28 | 47 | 12 | 27 | 26 | 32 | 47 | 32 | 30 | 29 | 38 | 49 |
275:week_2_arm_1 | 25 | 5 | 4 | 23 | 4 | 4 | 5 | 24 | 21 | 31 | 8 | 10 | 8 | 30 | 13 | 44 | 22 | 22 | 27 | 27 | 0 | 7 | 28 | 29 | 3 | 22 | 31 | 2 | 3 | 7 | 22 | 43 | 5 | 4 | 13 | 24 |
275:week_14_arm_1 | 30 | 10 | 9 | 28 | 9 | 9 | 10 | 29 | 26 | 34 | 13 | 13 | 13 | 33 | 18 | 47 | 27 | 27 | 32 | 30 | 7 | 0 | 31 | 34 | 8 | 27 | 34 | 7 | 6 | 12 | 27 | 48 | 10 | 9 | 18 | 29 |
275:week_52_arm_1 | 51 | 31 | 30 | 49 | 30 | 30 | 31 | 10 | 15 | 45 | 34 | 28 | 34 | 4 | 23 | 28 | 8 | 8 | 13 | 45 | 28 | 31 | 0 | 55 | 29 | 8 | 53 | 28 | 27 | 33 | 8 | 29 | 31 | 30 | 23 | 10 |
305:week_0_arm_1 | 18 | 32 | 31 | 16 | 31 | 31 | 32 | 51 | 48 | 22 | 35 | 37 | 35 | 57 | 40 | 37 | 49 | 49 | 46 | 18 | 29 | 34 | 55 | 0 | 30 | 49 | 22 | 29 | 30 | 26 | 49 | 36 | 32 | 31 | 40 | 51 |
305:week_26_arm_1 | 26 | 4 | 5 | 24 | 5 | 5 | 4 | 25 | 20 | 32 | 9 | 11 | 9 | 31 | 12 | 45 | 23 | 23 | 26 | 28 | 3 | 8 | 29 | 30 | 0 | 23 | 32 | 3 | 4 | 6 | 23 | 44 | 4 | 5 | 12 | 25 |
305:week_52_arm_1 | 45 | 25 | 24 | 43 | 24 | 24 | 25 | 4 | 9 | 51 | 28 | 30 | 28 | 10 | 17 | 24 | 2 | 2 | 7 | 47 | 22 | 27 | 8 | 49 | 23 | 0 | 51 | 22 | 23 | 27 | 2 | 23 | 25 | 24 | 17 | 4 |
365:week_0_arm_1 | 20 | 34 | 33 | 18 | 33 | 33 | 34 | 53 | 50 | 18 | 29 | 31 | 29 | 55 | 42 | 37 | 51 | 51 | 56 | 12 | 31 | 34 | 53 | 22 | 32 | 51 | 0 | 31 | 30 | 36 | 51 | 38 | 34 | 33 | 42 | 53 |
365:week_2_arm_1 | 25 | 5 | 4 | 23 | 4 | 4 | 5 | 24 | 21 | 31 | 8 | 10 | 8 | 30 | 13 | 44 | 22 | 22 | 27 | 27 | 2 | 7 | 28 | 29 | 3 | 22 | 31 | 0 | 3 | 7 | 22 | 43 | 5 | 4 | 13 | 24 |
365:week_14_arm_1 | 26 | 6 | 5 | 24 | 5 | 5 | 6 | 25 | 22 | 30 | 9 | 9 | 9 | 29 | 14 | 43 | 23 | 23 | 28 | 26 | 3 | 6 | 27 | 30 | 4 | 23 | 30 | 3 | 0 | 8 | 23 | 44 | 6 | 5 | 14 | 25 |
365:week_26_arm_1 | 30 | 8 | 9 | 28 | 9 | 9 | 8 | 29 | 24 | 36 | 13 | 15 | 13 | 35 | 16 | 49 | 27 | 27 | 22 | 32 | 7 | 12 | 33 | 26 | 6 | 27 | 36 | 7 | 8 | 0 | 27 | 48 | 8 | 9 | 16 | 29 |
365:week_52_arm_1 | 45 | 25 | 24 | 43 | 24 | 24 | 25 | 4 | 9 | 51 | 28 | 30 | 28 | 10 | 17 | 24 | 2 | 2 | 7 | 47 | 22 | 27 | 8 | 49 | 23 | 2 | 51 | 22 | 23 | 27 | 0 | 23 | 25 | 24 | 17 | 4 |
527:week_0_arm_1 | 24 | 42 | 41 | 24 | 41 | 41 | 42 | 21 | 26 | 34 | 45 | 47 | 45 | 27 | 34 | 7 | 23 | 23 | 28 | 32 | 43 | 48 | 29 | 36 | 44 | 23 | 38 | 43 | 44 | 48 | 23 | 0 | 42 | 41 | 34 | 21 |
527:week_2_arm_1 | 24 | 2 | 3 | 22 | 3 | 3 | 2 | 23 | 18 | 30 | 7 | 9 | 7 | 29 | 10 | 47 | 25 | 25 | 28 | 30 | 5 | 10 | 31 | 32 | 4 | 25 | 34 | 5 | 6 | 8 | 25 | 42 | 0 | 3 | 10 | 23 |
527:week_14_arm_1 | 23 | 3 | 2 | 21 | 2 | 2 | 3 | 22 | 19 | 29 | 6 | 8 | 6 | 28 | 11 | 46 | 24 | 24 | 29 | 29 | 4 | 9 | 30 | 31 | 5 | 24 | 33 | 4 | 5 | 9 | 24 | 41 | 3 | 0 | 11 | 22 |
527:week_26_arm_1 | 32 | 10 | 11 | 30 | 11 | 11 | 10 | 15 | 10 | 38 | 15 | 17 | 15 | 21 | 2 | 39 | 17 | 17 | 20 | 38 | 13 | 18 | 23 | 40 | 12 | 17 | 42 | 13 | 14 | 16 | 17 | 34 | 10 | 11 | 0 | 15 |
527:week_52_arm_1 | 43 | 23 | 22 | 41 | 22 | 22 | 23 | 2 | 7 | 49 | 26 | 28 | 26 | 8 | 15 | 26 | 4 | 4 | 9 | 49 | 24 | 29 | 10 | 51 | 25 | 4 | 53 | 24 | 25 | 29 | 4 | 21 | 23 | 22 | 15 | 0 |
Defining the similarity metric
Use the flag --similarity-metric-cohort
. The default value is hamming
. The alternative value is jaccard
.
Exporting intermediate files
It is possible to export all intermediate files, as well as a file indicating coverage with the flag --e
.
Examples:
pheno-ranker -r individuals.json --e
pheno-ranker -r individuals.json --e my_fav_id # for chosing a prefix
The intermediate files can be used for further processing (e.g., import to a database; see FAQs) or to make informed decisions. For instance, the file export.coverage_stats.json
has stats on the coverage of each term (1D-key) in the cohort. It is possible to go more granular with a tool like jq
that parses JSON
. For instance:
This command will print how many variables per individual were actually used to perform the comparison. You can post-process the output to check for unbalanced data.
Included R scripts
You can find in the link below a few examples to perform clustering and multimensional scaling with your data:
Clustering¶
The matrix can be processed to obtain a heatmap:
R code
# Load library
library("pheatmap")
# Read in the input file as a matrix
data <- as.matrix(read.table("matrix.txt", header = TRUE, row.names = 1, check.names = FALSE))
# Save image
png(filename = "heatmap.png", width = 1000, height = 1000,
units = "px", pointsize = 12, bg = "white", res = NA)
# Create the heatmap with row and column labels
pheatmap(data)
Dimensionality reduction¶
The same matrix can be processed with multidimensional scaling to reduce the dimensionality.
R code
library(ggplot2)
library(ggrepel)
# Read in the input file as a matrix
data <- as.matrix(read.table("matrix.txt", header = TRUE, row.names = 1, check.names = FALSE))
#perform multidimensional scaling
fit <- cmdscale(data, eig=TRUE, k=2)
#extract (x, y) coordinates of multidimensional scaling
x <- fit$points[,1]
y <- fit$points[,2]
# Create example data frame
df <- data.frame(x, y, label=row.names(data))
# Save image
png(filename = "mds.png", width = 1000, height = 1000,
units = "px", pointsize = 12, bg = "white", res = NA)
# Create scatter plot
ggplot(df, aes(x, y, label = label)) +
geom_point() +
geom_text_repel(size = 5, # Adjust the size of the text
box.padding = 0.2, # Adjust the padding around the text
max.overlaps = 10) + # Change the maximum number of overlaps
labs(title = "Multidimensional Scaling Results",
x = "Hamming Distance MDS Coordinate 1",
y = "Hamming Distance MDS Coordinate 2") + # Add title and axis labels
theme(
plot.title = element_text(size = 30, face = "bold", hjust = 0.5),
axis.title = element_text(size = 25),
axis.text = element_text(size = 15))
Graph analytics¶
Pheno-Ranker
has an option for creating a graph in JSON
format, compatible with Cytoscape ecoystem.
Bash code for Cytoscape-compatible graph/network
This command generates agraph.json
file, as well as a matrix.txt
file.
To produce summary statistics, use:
This command will produce a file calledgraph_stats.txt
. For additional information, see the generic JSON tutorial.
We'll be using individuals.json
again, which includes data for 36 patients. This time, however, we'll use it twice to simulate having two cohorts. The software will add a CX_
prefix to the primary_key
values to help us keep track of which patient comes from which usage of the file.
Is it possible to have a cohort with just one individual?
Absolutely, a cohort can indeed be composed of a single individual. This allows for an analysis involving both a cohort and specific patient(s) simultaneously.
The prefixes can be changed with the flag --append-prefixes
:
matrix.txt
file of (36+36) x (36+36) cells. Again, this matrix can be processed with R: